If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6b^2+29b+35=0
a = 6; b = 29; c = +35;
Δ = b2-4ac
Δ = 292-4·6·35
Δ = 1
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1}=1$$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(29)-1}{2*6}=\frac{-30}{12} =-2+1/2 $$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(29)+1}{2*6}=\frac{-28}{12} =-2+1/3 $
| 2e=10e-16 | | 2.7x-17.1=-6.3 | | -6=1÷20h | | 3(t-7)=5(3-t)+2t+6 | | 33=44-n | | 8^7=2^n | | 61=36+x | | 1/7+x/7=-5/7 | | 2e=10-16 | | -5r-15=-5(r+3) | | 10=-x+288 | | 4x+3-2x+8=41 | | 10p=1,000 | | 192=-v+45 | | -4(-5x-9)=36 | | 2400=3x*4x | | x/6+5=11 | | 55-y=247 | | -4+4n+2n+7=3-5n | | 4x-7+9=-34 | | x+36=62 | | -4d-4d=-48 | | 3=176-x | | -3x+11=4 | | 10x2+41x-41=0 | | -13+4x=1-3x | | 4(t-1)=8+t | | 4x2-16x-84=0 | | 15.90+0.05x=16.53-0.13x | | 1/2(x+29)=x+19 | | 10=8x+74 | | 56=7x+7x |